發(fā)布者:抗性基因網(wǎng) 時間:2023-06-12 瀏覽量:436
摘要
? ? ? 由于人類和海洋生物中抗生素耐藥性基因的發(fā)展,在水生環(huán)境中檢測抗生素是一個嚴(yán)重的健康問題。目前的研究旨在以一種簡單且“更環(huán)?!钡穆肪€在膨潤土中合成高效的異質(zhì)結(jié)雙金屬納米催化劑(Cu0+Ag0)。番石榴葉的植物化學(xué)物質(zhì)在膨潤土支撐介質(zhì)上原位合成Cu0和Ag0納米顆粒。先進(jìn)的分析方法對納米材料進(jìn)行了廣泛的表征。潛在的抗生素(阿莫西林和磺胺二甲嘧啶)利用UV-A和LED(可見光)光源在類似光芬頓的過程中進(jìn)行處理。膨潤土中的雙金屬(Cu0+Ag0)對阿莫西林和磺胺二甲嘧啶的光誘導(dǎo)降解表現(xiàn)出協(xié)同作用。pH、初始污染物濃度和干擾離子的存在的影響優(yōu)化了去除效率,并證明了對反應(yīng)機(jī)理的深入了解。在使用(Cu0+Ag0)@膨潤土納米催化劑的UV-A照射下,AMX和SMZ的光Fenton樣降解分別為84%和74%。類似地,使用UV-a輻射,該過程礦化了大量的這些污染物,即分別為66%和62%的SMX和SMZ。,從而提高了催化劑的適用性。納米催化劑在反應(yīng)器操作中表現(xiàn)出更大的穩(wěn)定性,并且Cu(II)在反應(yīng)途徑中的浸出程度非常低。真實的水影響推斷了新型納米催化劑在擴(kuò)大阿莫西林和磺胺二甲嘧啶污染水凈化過程中的潛力。
Abstract
Detecting of antibiotics in the aquatic environment is a serious health concern due to the development of antibiotic-resistant genes in humans and marine life. The current investigation aims to synthesize highly efficient heterojunction bimetallic nanocatalyst (Cu0 + Ag0)@Bentonite in a facile and ‘greener’ route. In situ, the phytochemicals of P. guajava leaves synthesize the Cu0 and Ag0 nanoparticles onto the bentonite support media. The advanced analytical methods characterize the nanomaterials extensively. The potential antibiotics (amoxicillin and sulfamethazine) are treated in photo-Fenton-like processes utilizing the UV-A and LED (Visible) light sources. The bimetallic (Cu0 + Ag0)@Bentonite exhibited a synergized in the photo-induced degradation of amoxicillin and sulfamethazine. The effect of pH, initial pollutant concentrations, and the presence of interfering ions optimize the removal efficiency and demonstrate insights into the reaction mechanism. The photo-Fenton-like degradation of AMX and SMZ was found to be 84 % and 74 %, respectively, under the UV-A illumination employing (Cu0 + Ag0)@Bentonite nanocatalyst. Similarly, the process mineralizes a significant amount of these pollutants, i.e., 66 % and 62 % of SMX and SMZ, respectively, using UV-A irradiation., enhancing the applicability of the catalyst. The nanocatalyst showed greater stability in the reactor operations, and Cu(II) leaches very minimally extent in the reaction pathways. The real water implications inferred the potential of novel nanocatalysts in scaling up the process for the decontamination of water contaminated with amoxicillin and sulfamethazine.
https://www.sciencedirect.com/science/article/abs/pii/S1383586622021980